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Abstract

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency disorder affecting
over 400 million individuals worldwide. G6PD protects red blood cells (RBC) from the harmful effects of oxidative
substances. There are more than 400 G6PD mutations, of which 186 variants have shown to be linked to G6PD deficiency
by decreasing the activity or stability of the enzyme. Different variants manifest different clinical phenotypes which
complicate comprehending the mechanism of the disease. In order to carry out computational approaches to elucidate
the structural changes of different G6PD variants that are common to the Asian population, a complete G6PD monomer-
ligand complex was constructed using AutoDock 4.2, and the molecular dynamics simulation package GROMACS 4.6.7
was used to study the protein dynamics. The G410D and V291IM variants were chosen to represent classes I and II
respectively and were created by in silico site-directed mutagenesis. Results from the Root mean square deviation
(RMSD), Root mean square fluctuation (RMSF) and Radius of gyration (Rg) analyses provided insights on the structure
— function relationship for the variants. G410D indicated impaired dimerization and structural NADP binding while the
impaired catalytic activity for V291M was indicated by a conformational change at its mutation site.

Keywords: G6PD deficiency, Molecular dynamics simulation, Protein-ligand complex

1. Introduction oxidative component nicotinamide adenine dinu-
cleotide phosphate (NADPH) which protects red
blood cells (RBC) from the harmful effects of free

deficiency is the most common enzyme defi- radicals [5]. In the event of acquiring deleterious
ciency disorder affecting more than 400 million in- muta’fior}s which affect the topical structure of the
dividuals worldwide [1]. With regards to global ~ Protein, it would affect normal G6PD enzyme levels
incidence of the enzymopathy, approximately leading to a deficiency in the enzyme, and thus
5—20% of cases are found in Asia [2,3]. G6PD is the leading to RBC hemolysis under oxidative stress
key regulatory enzyme in the pentose phosphate [6,71.

pathway [4], responsible for the production of anti- There have been reports of more than 400 G6PD
variants, of which approximately 50% of variants

lucose-6-phosphate dehydrogenase (G6PD)
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lead to G6PD deficiency characterized by reduced
enzyme activity and structural integrity of the pro-
tein structure [8]. G6PD variants resulting from
different mutations lead to different clinical symp-
toms [9,10]. Furthermore, depending on the delete-
rious effects of a variant, they have been grouped
into five classes (I, II, III, IV and V), classes I, II and
III represent the most damaging variants, whereas
classes IV and V are less harmful [9,11].

There are many mutations distributed throughout
the protein structure [12], however the effects of
these mutations on enzyme structure and function
remain unclear. Less than 10% of known G6PD
variants have been analyzed in depth by correlating
their clinical manifestation with their respective
mutations [13]. Hence, this study sought to investi-
gate the structural—functional relationship of G6PD
variants originating from Asia [14,15], using struc-
tural analysis and molecular dynamic simulation
analysis (MDSA). G6PD variants G410D and V291M
which represent classes I and II respectively origi-
nating from Asia were chosen for this study and
subjected to MDSA. G6PD deficiency clinically
manifests into acute hemolytic anemia, chronic non-
spherocytic hemolytic anemia (CNSHA), neonatal
jaundice and favism, of which variants G410D and
V291M are known to exhibit CNSHA and increased
microparticle level respectively, indicative of
oxidative damage [16,17]. Moreover, these variants
have been biochemically characterized, providing
an opportunity to bridge our in silico analyses with
reports from previous in vitro experiments that
examine G6PD protein-ligand affinity [17,18].

The human G6PD enzyme, in its active state is
found in dynamic equilibrium of dimer and
tetramer [19,20]. However, there are no complete
monomeric or dimeric structures of the human
G6PD protein bound to substrate glucose-6-phos-
phate (G6P) with the structural NADP (s.NADP) and
catalytic cofactor NADP (c.NADP) available in the
Protein Data Bank [21]. In order to study the struc-
tural changes of G6PD mutants, a complete G6PD
monomer in complex with its ligands was con-
structed using the AutoDock 4.2 program [22].
Crystal structures 2BH9 and 2BHL were retrieved
from the Protein Data Bank [20]. A complete
monomer was produced by docking G6P from 2BHL
onto 2BHY, thereby producing a complete G6PD
monomer. Site-directed mutagenesis was per-
formed using the SwissPDB viewer to create the
variants [23]. Structural analyses on the protein
were performed by using PyMOL [24].

Previous studies have exemplified the power of
MDSA in estimating protein-ligand affinities and
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evaluating protein structural integrity [25—27].
Moreover, there have been G6PD-related MDSA
studies which focused on the protein-ligand affin-
ities and structural integrity for G6PD monomers
and dimers respectively [28,29]. However, such
studies analyzed G6PD variants common to the
Arab, USA and German population, there is lack of
information for variants common to the Asian
population.

The structural stability of the constructed mono-
meric native protein and variants were analyzed by
using the molecular dynamics simulation program
GROMACS 4.6.7 with the GROMOS96 54a7 force
field [30,31]. The protein structure was solvated in a
cubic box and neutralized by using the GROMACS
genion tool. The system was neutralized by adding
sodium ions. The system's total energy was mini-
mized until the lowest energy (1000 kJ) was ob-
tained. The system was subsequently equilibrated
by subjecting the system to 50,000 steps of NVT and
NPT. The system was then subjected to a 100 ns
simulation.

The resultant trajectories were analyzed using
utilities available in the GROMACS package such as
gmx rmsd, gmx rmsf, gmx gyrate, that were used to
determine the root-mean-square deviation (RMSD),
root mean square fluctuation (RMSF) and radius of
gyration (Rg) respectively. The results of the ana-
lyses were graphically represented using the
XMGRACE software to compare the variants
against the native protein or wild type [32].

2. Main results

Class I Shinagawa (G410D) and class II Viang-
chan (V291M) had different implications on the
enzyme. Results from structural analyses showed
G410D was positioned within one of the most
flexible coils at the dimer interface close to the
structural NADP binding site as depicted in Fig. 1.
The increased size of the charged side chain (Asp)
resulted in steric hindrance with nearby residues
that altered the coil's structure when glycine was
replaced. Lys 407 which is located close to the
mutational site is involved in salt bridge formation
during dimerization, which is crucial for the en-
zyme's catalytic activity [19]. The inactivation of the
enzyme's activity was a result of distorted inter-
molecular interactions found in G410D. Although
the V291M variant is located far from the substrate
and structural NADP binding site (22A and 25A
respectively), it causes conformation instability and
loss of catalytic efficiency as reported by Boonyuen
et al. (2017) [33].
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Fig. 1. Cartoon view of the G6PD monomer in complex with its substrate glucose-6 phosphate (orange), catalytic NADP (blue), and structural NADP
(red). Variants V291IM and G410D are depicted in magenta spheres.

2.1. RMSD for wild type G6PD and mutants where a high RMSD indicates greater deviations
throughout the simulation [25,34]. From Fig. 2, the

RMSD allows determining the equilibration of the =~ RMSD plots indicates that G410D exhibited lower
simulated trajectory throughout the simulation, deviations compared to the native protein as the

RMSD
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Fig. 2. RMSD of protein backbone throughout the simulation. The RMSD of the variants are plotted against the WT. Variants G410D (blue) and
V291M (green) are plotted against the native protein (grey).
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RMSD curve could be stabilized around 0.43 nm
throughout the simulation. The native protein and
V291M showed significant deviation with average
RMSD of 0.45 nm and 0.32 nm respectively. How-
ever, the RMSD of V291M increased after 70 ns, and
stabilized around 0.5 nm at 90 ns making the native
protein structure more stable.

2.2. RMSF for wild type G6PD and mutants

RMSF allows evaluating the differences in flexi-
bility among residues, where higher the RMSF,
greater the movements of residues, in relation to
their average position [25,34]. The RMSF of G410D
fluctuated the most at the dimer interface and the
structural NADP binding site. V291M showed high
residual fluctuation at the catalytic NADP binding
site and at its mutation site compared to the native
protein as shown in Fig. 3.

2.3. Rg for wild type G6PD and mutants

Radius of gyration acts as a means to deduce the
compactness of a protein structure during simula-
tion, where a low Rg value defines high structural
compactness [25,34]. Mutations on the G6PD pro-
tein often affect protein folding [35]. As seen in Fig.
4, the gyration plot of G410D showed slight in-
crease in Rg value compared to the native protein
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indicating that its mutation affected protein
folding. V291M on the other hand had higher Rg
values compared to the native protein indicating
that protein folding was also affected due to its
mutation (see Fig. 4).

2.4. Hydrogen plots for substrates and cofactors of
the wild type G6PD and mutants

Hydrogen bonds play a vital role in molecular
recognition and overall stability of protein struc-
tures [25,28,34]. Intermolecular hydrogen bonding at
the substrate and cofactors were analysed during
simulation. From Fig. 5, it can be observed that there
were no significant changes in intermolecular
hydrogen bonding between the protein and c. NADP
for the native protein and variants. From the
hydrogen bond plots depicted in Figs. 5 and 6, both
native and mutant G6PD structures had similar
number of hydrogen bonds to the catalytic and
structural NADP ligands respectively. However, the
number of hydrogen bonds for G6P differed
significantly as shown in Fig. 7, where G410D and
V291M appeared to maintain 2 and 1 hydrogen
bonds respectively. This indicates that structural
changes associated with the mutations might have
altered the G6P affinity, hence affecting the en-
zyme's catalytic activity induced by hindered sub-
strate oxidation.

RMS fluctuation
Backbone after 1sq fit to Backbone

Catalytic NADP

G6P substrate

i W’“‘\J !J‘\'“w, ji by
| :

Native
V291M ==
G410D ===

Structural NADP

100 200

Residue

300 400 500

Fig. 3. RMSF of the carbon o atoms throughout the simulation for variants G410D (blue) and V291M (green) against the native protein (grey), where
the yellow, blue and red layout represent residues which are involved in making the binding pockets of the catalytic NADP, glucose-6-phosphate and

structural NADP respectively.
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Fig. 4. Rg of the protein structure for variants G410D (blue) and V291M (green) against the native protein (black).

Previous kinetic characterization and estimation  affinity. Greater the K, values, lower the protein-
of protein — ligand affinities for G6PD variants were  ligand affinity [36]. Based on the kinetic characteri-
performed by computing the K, values, which are  sation by Hirono A et al. (1994) and Gémez-Manzo S
an inverse measurement of the protein-ligand A et al. (2016), both G410D and V291M exhibit loss
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Fig. 5. H-bond plots depicting number of hydrogen bonds between G6PD and c.NADP for variants G410D (blue) and V291M (green) against the
native protein (black), depicting no significant changes in intermolecular hydrogen binding.
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Fig. 6. H-bond plots depicting number of hydrogen bonds between G6PD and s.NADP for variants G410D (blue) and V291M (green) against the
native protein (black), depicting a change in the number of hydrogen bonds for V291M.
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Fig. 7. H-bond plots depicting number of hydrogen bonds between G6PD and G6P for variants G410D (blue) and V291M (green) against the native
protein (black), depicting fluctuations in the number of hydrogen bonds for both mutants.
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of affinity towards G6P (indicated by higher K,
values) which is in accordance with the protein —
ligand affinity estimation of this study as shown in
Fig. 7. It was interesting to note that there were no
significant changes in binding affinity between
G6PD and c.NADP for the native protein and vari-
ants as shown in Fig. 5, which is similar to the ki-
netic characteristics for the variants, where they
depict similar K,,, values to the native protein indi-
cating similar c.NADP affinity [17,18].

Invaluable insights on the altered structural sta-
bility of the protein was determined from the
various analyses performed. Since the Shinagawa
variant showed large fluctuations at the dimer
interface and the s.NADP binding site, its muta-
tional effect could be translated to understand the
structural-functional effects of class I mutants.
Moreover, this corroborated previous findings that
any mutation affecting the dimerization mechanics
of the protein, results in its impaired enzymatic ac-
tivity, therefore yielding low levels of G6PD which is
a major hallmark of class I mutants. Furthermore,
the gyration plot displayed a slight increase in Rg
value compared to the native structure indicating
that the Shinagawa mutation affects protein folding.
The Viangchan variant exhibited impaired folding
as well, which was characterised by the increase in
Rg values. In addition, the RMSF plots depicted low
residual fluctuations at the catalytic NADP binding
site, whereas a high residual fluctuation was iden-
tified at the mutational site. Hence, from the above
findings, loss of catalytic activity for the Viangchan
variant might have been due to a structural alter-
ation at its mutation site, rather than the dimer
interface or the structural NADP binding site.

The effects of the mutations analysed would be
more apparent by simulating the G6PD enzyme in
its dimeric form. There have been recent discoveries
of small molecules which serve as agonists by
elevating G6PD enzyme activity in variants [37—40].
One such molecule called AG1 functioned by
spanning both monomeric subunits of the G6PD
dimer and elevating low enzyme levels in G6PD
variants by increasing the structural integrity of the
dimer bridge. However, its mode of action appeared
to be selective, as it was unable to activate few class I
variants [41]. Therefore, constructing and simulating
a G6PD dimer in complex with G6P, ¢ NADP and
s.NADP would allow determining whether a
particular mutation affects dimerization character-
ized by increased distance and lack of hydrogen
bonds between BN 415—423 of each monomeric
subunit.

BioMedicine
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3. Conclusion

Employing computational methods to study how
different G6PD variants manifest into different
clinical phenotypes allows a better understanding of
the structure—function relationship and provides an
opportunity to improve diagnostics for G6PD-
related diseases and development of drugs for
G6PD deficient patients. Future studies on simu-
lating the dimeric form of G6PD would provide
more insights on the structural changes of G6PD
variants. Following up with in-vitro experimentation
for variants that show distinct structural activity like
protein expression, enzyme kinetic studies and
enzyme activity assays to verify computational pre-
dictions, would complement this study and make
overall findings robust.
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