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Summary

COVID-19 pandemic has been a global outbreak of coronavirus (SARS-CoV-2 virus) since 2019. Taiwan Chingguan
Yihau (NRICM101) is the first traditional Chinese medicine (TCM) classic herbal formula and is widely used for
COVID-19 patients in Taiwan and more than 50 nations. This study is to investigate in silico target fishing for the
components of NRICM101 and to explore whether NRICM101 inhibits cytokines-induced normal human lung cell
injury in vitro. Our results showed that network prediction of NRICM101 by a high throughput target screening plat-
form showed that NRICM101 has multiple functions that may affect cytokine regulation to prevent human lung cell
injury. In addition, NRICM101 revealed protective effects against TNF-a/IL-1b-induced normal human lung HEL
299 cell injury through JNK and p38MAPK kinase signaling. Next-generation sequencing (NGS) analysis of NRICM101
on TNF-a/IL-1b-injured HEL 299 cells indicated that inflammatory pathway, cell movement of macrophages, cellular
infiltration by macrophages, and Th1/Th2 immuno-regulation pathways were included. Thus, NRICM101 is a thera-
peutic agent, and it can improve COVID-19 syndrome to confer beneficial effects through multiple targeting and
multiple mechanisms.
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injury, High throughput target screening platform, Next-generation sequencing (NGS)
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1. Introduction

A traditional Chinese medicine formula Taiwan
Chingguan Yihau (NRICM101) is the first

traditional Chinese medicine (TCM) classic herbal
formula that is widely used in more than 50 nations
for COVID-19 patients [1]. NRICM101 consists of
ten herbs (Fig. 1), including Scutellaria Root (Scu-
tellaria baicalensis, HA.), Mongolian Snakegourd
Fruit (Trichosanthes kirilowii, ND.), Indigowoad Root
(Isatis indigotica, NE.), baked Liquorice Root (Gly-
cyrrhiza glabra, NG.), Saposhnikovia Root (Sap-
oshnikovia divaricata, NC.), Peppermint Herb
(Mentha haplocalyx, NL.), Mulberry Leaf (Morus alba,
NB.), Fineleaf Nepeta (Nepeta tenuifolia, NR.),
Heartleaf Houttuynia (Houttuynia cordata, HC.), and
Magnolia Bark (Magnolia officinalis, NK.) [1]. All
herbal preparations have been shown to exert po-
tential for inhibiting SARS-CoV-2 of respiratory
infection and immune-modulatory effect, indicated
by the National Research Institute of Chinese
Medicine (NRICM) of Taiwan after evaluating clin-
ical symptoms. Scientific evidence based on a clin-
ical perspective indicates that NRICM101 may
disrupt COVID-19 disease progression via antiviral
and anti-inflammatory effects to offer promise as a
multi-target agent for the prevention and treatment
[1]. NRICM101 is an anti-SARS-CoV-2 therapeutic
agent as mentioned in COVID-19 treatment

guidelines in Taiwan (https://www.mohw.gov.tw/
cp-16-60830-1.html). Patients with severe COVID-
19 to cause a large number of pro-inflammatory
macrophages were found in bronchoalveolar lavage
fluid and released a large number of IL-1, TNF-a,
IL-6 IL-8, CSF, and MCP-1 to induce cytokine storm
[2]. Therapeutics with the potential to mitigate in-
flammatory cytokines may attenuate disease pro-
gression and mortality [3e5].
The manifestations of SARS-CoV-2 infection vary

widely from asymptomatic diseases to severe
pneumonia and life-threatening complications [6,7].
Abnormal lung function is the most common feature
among patients of SARS-CoV-2 infection and can be
complicated by acute respiratory distress syndrome
(ARDS), particularly in elderly people with multiple
comorbidities [8e10]. As the pandemic of COVID-19
continues which are with high levels of inflamma-
tory markers, and are often accompanied by evi-
dence of pulmonary fibrosis including interstitial
thickening, coarse reticular patterns, and paren-
chymal bands lymphopenia [11e13]. Retrospective
analyses have found that elevated inflammatory
markers (such as erythrocyte sedimentation rate, C-
reactive protein, ferritin, TNF-a, IL-1, and IL-6) are
higher in patients who died compared to survivors
[14,15]. Cytokine-release syndrome (CRS), cytokine
storm and post-COVID syndrome (PCS) are sug-
gested as two of the major pathophysiological

Fig. 1. The components of traditional Chinese medicine (TCM) formula NRICM101.
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processes of SARS-CoV-2 infection and promote the
deterioration of COVID-19 [8e10]. Laboratory anal-
ysis demonstrated that SARS-CoV-2 spike (S) pro-
tein was associated with the up-regulation of AT1
signaling which led to the induction of transcrip-
tional regulatory molecules (NF-kB, c-Fos, and
MAPK activation) [16]. The signal transduction may
lead to secrete high levels of inflammatory cytokines
that are observed in the lungs of COVID-19 patients
like cytokine storm and pulmonary fibrosis due to
macrophage activation and infiltration [17,18].
Our goal of this study is to understand whether

NRICM101 could interact with other target proteins
and inhibit cytokine-induced human lung cell
injury. The study design and schematics were per-
formed by in silico target fishing for the components
of NRICM101, the workflow of in silico assay and in
vitro bioactivity analysis are presented in Fig. 2.

2. Materials and methods

2.1. In silico studies of high throughput target
screening and network analysis

The major components of NRICM101 (Baicalein,
Baicalin, Wogonin, Wogonoside, Decanoyl acetalde-
hyde, Lauric aldehyde, Quercetin, Linalool, Luteolin,
Kaempferol, N-Methyl-1-deoxynojirimycin, 2-O-a-D-
galactopyranosyl-deoxy -nojirimycin, fagomine,
Rutin, Isoquercitrin, 3-O-glucuronide, b-sitosterol,
Stigmasterol, Camposterol, 5-O-methylvisammio-
side, prim-O-glucosylcimifugin, Cimifugin, sec-O-

glucosylhamaudol, Hamaudol, Lignoceric acid,
Dacursin, Bryonolic acid, Cucurbitacin B, Cucurbita-
cin D, 23024-dihydrocucurbitacin B, Epigoitrin,
Indigotin, Indirubin, Clionasterol, Sinigrin, Indoxyl b-
d-glucoside, Epigoitrin, Palmitic acid, Adenosine,
Glycyrrhetic acid, Glycyrrhizic acid, Glabrolide,
Liquiritin, liquiritingenin, isoliquiritin, iso-
liquiritingenin, Magnolol, Honokiol, a-eudesmol,
b-eudesmol, Menthol, Menthone, Glucoside, Apige-
nin, Chlorogenic acid, Caryophyllene, Pulegone,
Menthone, a-Phytosterol, a-Tocopherolquinone)
were sketched using BIOVIA Draw and prepared for
generating the fitting compound for protonated iso-
mers and tautomers at pH 7.4. A total of 16,035 target
proteins by pharmacophore models in PharmaDB
(BIOVIA Discovery Studio 2020 software; Dassault
Syst�emes) were then applied as screening targets for
the 60 components of NRICM101 [19,20]. For network
analysis, a goodness-of-fit value of >0.6 was consid-
ered to be potential compound target proteins. To
generate a correspondingmolecular network of those
target proteins, all human target genes were set as
focus molecules and analyzed using a core analysis
tool in IPA (IPA 2020; Qiagen Sciences, Inc.). All pre-
sented pathways were deemed to be statistically sig-
nificant according to Fisher's exact t-test (P< 0.05) [12].

2.2. NRICM101 crude extracts preparation

NRICM101 crude extracts were obtained from
Department of Pharmacy, China Medical University
Hospital and prepared with the following

Fig. 2. Study design and flowchart of NRICM101 via in silico and in vitro studies.
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composition: Scutellaria Root (S. baicalensis, HA,
18.75 g), Heartleaf Houttuynia (H. cordata, HC,
18.75 g), Mulberry Leaf (M. alba, NB, 11.25 g), Sap-
oshnikovia Root (S. divaricata, NC, 7.50 g), Mongo-
lian Snakegourd Fruit (T. kirilowii, ND, 18.75 g),
Indigowoad Root (I. indigotica, NE, 18.75 g), baked
Liquorice Root (G. glabra, NG, 7.50 g), Magnolia
Bark (M. officinalis, NK, 11.25 g), Peppermint Herb
(M. haplocalyx, NL, 11.25 g), and Fineleaf Nepeta (N.
tenuifolia, NR, 11.25 g). For a patient's daily dose, a
full set of herbs and 1 L of water were placed in a
boiler, boiled, and simmered for the decoction to
reduce to 300 mL. The NRICM101 formulation was
boiled with 1000 mL distilled water for 60 min into a
350 mL decoction and then concentrated under
reduced pressure to 7.17 g by Rotary Evaporator
(Ne1300VF/OSB-2200; EYELA, Japan).

2.3. Cell viability and cell morphology detection

Normal human embryonic lung fibroblast cell line
(HEL 299) was obtained from the Bioresources
Collection and Research Center (cat. no. 60117) and
Food Industry Research and Development Institute
(Hsinchu, Taiwan). HEL 299 cells were cultured in
Dulbecco's modified Eagle's medium (DMEM) with
2 mM L-glutamine, 10% fetal bovine serum (FBS),
100 U/mL penicillin, and 100 mg/mL streptomycin
(Life Technologies) in 75-T culture flasks under a
humidified atmosphere with 5% CO2 at 37 �C. HEL
299 cells were cultured in 24-well plates at
2.5 � 105 cells/mL/well. The cells were treated with
TNF-a (50 ng/mL) and IL-1b (50 ng/mL) (Sigma-
eAldrich and Merck KGaA), and NRICM101 (50
and 100 mg/mL) for 24 h. Cell viability was detected
by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT) (SigmaeAldrich and
Merck KGaA) as previously described [21,22]. Blue
MTT formazan crystals were dissolved in DMSO
and measured using an ELISA reader at 570 nm
[21,22]. To determine the cell morphological
changes in cytokines-induced normal human lung
cell injury, HEL 299 cells were treated with TNF-a,
IL-1b (50 ng/mL, individual), and NRICM101 (50
and 100 mg/mL) for 24 h. Cell morphology was
examined by phase-contrast microscopy (Leica
Microsystems GmbH; magnification, 200X) [23].

2.4. Cell injury and DNA condensation by DAPI
stain

HEL299 cells were treatedwithTNF-a, IL-1b (50 ng/
mL, individual), and NRICM101 (50 and 100 mg/mL)
for 24 h. Cell injury and DNA condensation were
examined by DAPI staining (SigmaeAldrich and

Merck KGaA). The cell fluorescent imaging was
examined by Echo Revolve microscope (Echo Labo-
ratories, San Diego, California, 200X) [24,25].

2.5. JNK and p38MAPK kinase activities assay

JNK and p38MAPK kinase activities assay were
examined by phosphorylated protein kinase sand-
wich ELISA assay. p-p38 MAPK (Thr180/Tyr182)
(cat. no. 7946), p-JNK (Thr183/Tyr185) (cat. no.
#7325), and assays were performed according to the
manufacturer's protocols (PathScan Sandwich
ELISA kits; Cell Signaling Technology, Inc.). HEL
299 cells were treated with TNF-a, IL-1b (50 ng/mL,
individual), and NRICM101 (50 and 100 mg/mL) for
12 h. Cells were harvested and total proteins were
collected. Proteins were incubated in appropriate
antibody-coated micro-wells overnight at 4 �C. The
100 mL/well of the appropriate antibody was added
for 1.5 h at 37 �C, and an HRP-linked secondary
antibody was added for 60 min at 37 �C. Absorbance
was measured by an ELISA reader (Anthos 2001) at
450 nm as previously described [26,27].

2.6. Next-generation sequencing (RNA sequencing
transcriptional profile) analysis by whole
transcriptome sequencing

HEL299 cells were treatedwithTNF-a, IL-1b (50 ng/
mL, individual), and NRICM101 (100 mg/mL) for 12 h.
Total RNA was extracted using TRIzol ® reagent
(Invitrogen, USA). Purified RNA was using a Bio-
analyzer 2100 (Agilent Technology, USA) with an
RNA 6000 LabChip Kit (Agilent Technology, USA)
and measured at OD260 nm by ND-1000 spectropho-
tometer (Nanodrop Technology, USA). RNA sample
preparation procedures were performed according to
Illumina's official standard protocol. For library con-
struction, the SureSelect XT HS2 mRNA Library
Preparation Kit (Agilent, USA) was used, followed by
AMPure XP beads (Beckman Coulter, USA). The
Illumina sequencing-by-synthesis technology (Illu-
mina, USA) (300-cycle paired-end read; 150 PE) was
used for RNA sequencing. Sequencing results anal-
ysis (FASTQ reads) were using Illumina's base-calling
program bcl2fastq v2.20. Adaptor clipping and
sequence quality trimming were done using Trim-
momatic v0.36. HISAT2 for RNA alignment and the
expression levels were normalized by calculating
transcripts per million mapped reads. Differentially
expressed genes between TNF-a, IL-1b (50 ng/mL,
individual), andNRICM101 (100 mg/mL)-exposed and
control groups [TNF-a, IL-1b (50 ng/mL, individual)]
were selected using three criteria: P < 0.005, adj
P < 0.05 and absolute fold change of �1.5). The
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differentially expressed genes were selected by
StringTie (StringTir v2.1.4) andDEseq (DEseq v1.39.0)
with genome bias detection/correction using Wel-
gene Biotech's in-house pipeline. The p-value was
calculated using the hypergeometric p-value calcu-
lated as the probability of random drawing [28,29].

2.7. Network and signaling pathways analysis by
ingenuity pathway analysis (IPA) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)

For network and signaling pathways analysis of
the whole transcriptome sequencing database, a

total of 331 human target genes were prepared and
subsequently analyzed using a core analysis tool in
IPA software (IPA 2021; Qiagen Sciences, Inc.) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. The network analysis rankings were
calculated based on statistical significance using
Fisher's exact t-test (p < 0.05) [28,29].

2.8. Statistical analysis

For each in vitro study, three independent exper-
iments were conducted. Data are presented as the
mean ± standard (SD) deviation. One-way analysis

Fig. 4. Analysis of NRICM101 on molecule targets contribute to inflammation of the lung and respiratory system (A) and COVID-19 (B).

Fig. 3. Canonical pathways of NRICM101 via high throughput target screening platform analysis.
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of variance followed by Dunnett's test and Tukey's
post hoc test was conducted to analyze the differ-
ences between two groups and among multiple
groups by SPSS software version 25.0 (IBM, Corp.).
***P < 0.001 and ###P < 0.001 were considered to
indicate a statistically significant difference.

3. Results

3.1. In silico study

3.1.1. Pathways and network prediction of NRICM101
by high throughput target screening platform
To predict target proteins of NRICM101, we used

high throughput target screening platform analysis.
The canonical pathway of NRICM101 was showed in
Fig. 3, bars correspond to the related pathways asso-
ciated with NRICM101 include five part: cytokines
and immune cells (IL-15 Production, Leukocyte
Extravasation Signaling, LPS/IL-1 Mediated Inhibi-
tion of RXR Function; red lines), oxidative stress and
antioxidant (NRF2-mediated Oxidative Stress
Response, HIF1a Signaling; yellow lines), pulmonary

related disease (Pulmonary Fibrosis Idiopathic
Signaling Pathway, Pulmonary Healing Signaling
Pathway, Renin-Angiotensin Signaling; green lines),
receptor (Aryl Hydrocarbon Receptor Signaling, RAR
Activation, Estrogen Receptor Signaling, Glucocorti-
coid Receptor Signaling, G-Protein Coupled Receptor
Signaling, PXR/RXR Activation; purple lines) and
others (Sperm Motility, Xenobiotic Metabolism
Signaling, Xenobiotic Metabolism PXR Signaling
Pathway, Molecular Mechanisms of Cancer, Colo-
rectal Cancer Metastasis Signaling, Xenobiotic Meta-
bolism CAR Signaling Pathway, Pyridoxal 50-
phosphate Salvage Pathway, Xenobiotic Metabolism
General Signaling Pathway, Xenobiotic Metabolism
AHR Signaling Pathway, Salvage Pathways of Py-
rimidine Ribonucleotides, Axonal Guidance
Signaling, Cardiac Hypertrophy Signaling
(Enhanced), Endocannabinoid Cancer Inhibition
Pathway, Bladder Cancer Signaling, Gap Junction
Signaling, Agrin Interactions at Neuromuscular
Junction; blue lines). We summarized that molecule
targets contribute to inflammation of the lung and
respiratory systems (Fig. 4A) and COVID-19 (Fig. 4B)

Fig. 5. Network analysis of target molecules of pulmonary healing signaling pathways.
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on NRICM101. In addition, network analysis and
visualization revealed pulmonary healing signaling
pathways (Fig. 5), pulmonary fibrosis idiopathic
(Fig. 6), and IL-1/TNF signaling pathway (Fig. 7) with a
significant positive correlation. Our results suggest
that NRICM101 has not only anti-SARS-CoV-2 activ-
ity but also pneumonic protection and immune-
regulated effects. Here, it is hypothesized that
NRICM101 has multiple functions that may affect
cytokine regulation and prevent human lung cell
injury.

3.2. In vitro study

3.2.1. NRICM101 revealed protective effects against
TNF-a/IL-1b-induced normal human lung HEL
299 cell injury
To confirm the results of in silico prediction, we

further investigated the potential protective effects
of NRICM101 on TNF-a/IL-1b-induced cell injury
in HEL 299 cells. The results demonstrated that
cell viability significantly decreased in TNF-a/IL-1b
(50 ng/mL, individual) treatment (Fig. 8A) and

increased dead cells (Fig. 8B) and DNA condensa-
tion (Fig. 8C). However, the treatment with TNF-a/
IL-1b (50 ng/mL, individual) and NRICM101 (50
and 100 mg/mL) showed increased viable cells
(Fig. 8A) and decreased dead cells (Fig. 8B) and
DNA condensation (Fig. 8C). These results suggest
that NRICM101 might exert protective effects
against TNF-a/IL-1b-induced cell injury in HEL
299 cells.

3.2.2. NRICM101 against TNF-a/IL-1b-induced HEL
299 cell injury was attenuated through JNK and
p38MAPK kinase activities
In order to further confirm the results of TNF-a/IL-

1b-induced cell injury, both of JNK and p38MAPK
kinase activity assays were examined in TNF-
a/IL-1b-treated HEL 299 cells after NRICM101
treatment. Our results in Fig. 9 showed that phos-
phorylation of JNK and p38MAPK significantly
increased in TNF-a/IL-1b treatment, and NRICM101
significantly attenuated JNK and p38MAPK phos-
phorylation on TNF-a/IL-1b-treated HEL 299 cells.
The abovementioned findings revealed the

Fig. 6. Target molecular of pulmonary fibrosis idiopathic signaling pathway via network analysis.
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concentration-dependent effects of NRICM101 on
the down-regulation of JNK and p38MAPK kinase in
TNF-a/IL-1b-treated HEL 299 cells.

3.2.3. Next-generation sequencing analysis of
NRICM101 on TNF-a/IL-1b-injured HEL 299 cells
To improve insight into the biological activity of

NRICM101 in TNF-a/IL-1b-induced cell injury in
HEL 299 cells, RNA sequencing transcriptional pro-
file analysis was performed. As shown in Fig. 10A,

normalized RNA-sequencing data from NRICM101-
treated samples and the control group (TNF-a/IL-1b)
were clustered, indicating a significantly different
gene expression analysis. In Fig. 10B, red dots mean
significantly up-regulated genes, and green dots
mean significantly down-regulated genes in MA plot.
The 213 genes were up-regulated and 118 genes were
down-regulated. Supplementary Table S1 (https://
www.biomedicinej.com/cgi/editor.cgi?article¼1378&
window¼additional_files&context¼biomedicine)

Fig. 7. Pathway analysis with target molecular of IL-1/TNF signaling.
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Fig. 8. Effect of cell viability on TNF-a/IL-1b and NRICM101 co-incubation in HEL 299 cells. The cells (2.5 � 105 cells/mL/well) were exposed to
TNF-a/IL-1b and NRICM101 (50 and 100 mg/mL) for 24 h. (A) Cell viability was detected by the MTT assay. Data are presented as the
mean ± standard deviation (n ¼ 3) and analyzed using one-way ANOVA followed by Tukey's post hoc test. ***P < 0.001 vs control; ###P < 0.001 vs
TNF-a/IL-1b group. (B) Cell morphology was examined by phase-contrast microscopy. (C) Cell injury and DNA condensation were evaluated via
DAPI stain.

Fig. 9. Effect of JNK and p38 MAPK kinase activities on HEL 299 cells after TNF-a/IL-1b and NRICM101 exposure. HEL 299 cells (2.5 � 105 cells/
mL/well) were treated with TNF-a/IL-1b and NRICM101 (50 and 100 mg/mL) for 24 h. (A) JNK and (B) p38MAPK kinase activities assay were
examined by phosphorylated protein kinase sandwich ELISA assay. Data are presented as the mean ± standard deviation (n ¼ 3) and analyzed using
one-way ANOVA followed by Tukey's post hoc test. ***P < 0.001 vs control; ###P < 0.001 vs TNF-a/IL-1b group.
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showed the raw sequencing data of NRICM101-
treated TNF-a/IL-1b-injured HEL 299 cells. To
further determine the mechanism of action (MOA) of
the genes and associated functions, the Ingenuity
pathway analysis (IPA) database and KEGG database
were used. The most significantly enriched pathways
were selected and shown in Fig. 11. The pathway
included IL-15 Production, Th1 and Th2 Activation
Pathway, Role of Cytokines in Immune Cells, Car-
diac Hypertrophy Signaling, Airway Pathology in
Chronic Obstructive Pulmonary Disease, Th1
Pathway, Role of Macrophages, Fibroblasts, HMGB1
Signaling, Cytokine Production in Macrophages and
T Helper Cells, Wound Healing Signaling Pathway,
STAT3 Pathway, Differential Regulation of Cytokine
Production in IL-17, Apelin Cardiac Fibroblast
Signaling Pathway, LXR/RXR Activation, Athero-
sclerosis Signaling, Glucocorticoid Receptor
Signaling, Tumor Microenvironment Pathway, He-
patic Fibrosis, 3-phosphoinositide Degradation, IL-10
Signaling, D-myo-inositol-5-phosphate Metabolism,
p38 MAPK Signaling, Role of OCT4 in Mammalian
Embryonic Stem Cell Pluripotency, Role of IL-17F in
Allergic Inflammatory Airway Diseases, IL-6
Signaling, Role of Hypercytokinemia in the Patho-
genesis of Influenza. Our results showed the IL-1A,
IL-1B, TNFSF4, TNFSF18, IFI44L, IL32, and CCL2
genes were down-regulated of NRICM101 on TNF-a/

IL-1b-injured HEL 299 cells (Fig. 12 and Supple-
mentary Table S1 (https://www.biomedicinej.com/
cgi/editor.cgi?article¼1378&window¼additional_
files&context¼biomedicine)). In addition, those re-
sults suggest NRICM101 regulated TNF-a/IL-1b
medicated inflammatory pathway (Fig. 12A), cell
movement of macrophages, cellular infiltration by
macrophages (Fig. 12B), and Th1/Th2 immuno-
regulation pathways (Fig. 13) in TNF-a/IL-1b-injured
HEL 299 cells.

4. Discussion

Traditional Chinese medicine (TCM) formula,
Taiwan Chingguan Yihau (NRICM101), has been
administered orally to COVID-19 patients in Taiwan
[1]. NRICM101 consisted of ten herbs [1], and it was
demonstrated that Scutellaria Root (S. baicalensis,
HA.), Heartleaf Houttuynia (H. cordata, HC.) and
Peppermint Herb (M. haplocalyx, NL.) potentially
blocked spike (S) protein of SARS-CoV-2 and host's
angiotensin-converting enzyme 2 (ACE2) interac-
tion [30e34]. In addition, Scutellaria Root (S. baica-
lensis, HA.), Peppermint Herb (M. haplocalyx, NL.),
Fineleaf Nepeta (N. tenuifolia, NR.), Magnolia Bark
(M. officinalis, NK.) and Mulberry Leaf (M. alba, NB.)
inhibited 3C-like protease (3CLpro) or main protease
(Mpro) activity of SARS-CoV-2 [34e41]. In our early

Fig. 10. RNA sequencing transcriptional profile of the (A) two samples [HEL 299 cells before TNF-a/IL-1b and TNF-a/IL-1b/NRICM101 (100 mg/mL)
treatment]. (B) Differential expression of MA plot was performed and showed that red dots (213) represent upregulated and green dots (118)
downregulated between the TNF-a/IL-1b and TNF-a/IL-1b/NRICM101 groups.
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study demonstrated that baicalin, one of the active
components in Scutellaria Root (S. baicalensis, HA.),
has a high binding affinity and inhibitory effect on
Papain-like Protease (PLpro) [9,19]. In silico study
showed quercetin and kaempferol of Heartleaf
Houttuynia (H. cordata, HC.) had high binding af-
finities for 3C-like protease (3CLpro) and RNA-
dependent RNA polymerase (RDRP) of SARS-CoV-
2 [19]. Honokiol, isolated from Magnolia Bark (M.
officinalis, NK.), exerted a high binding affinity on
angiotensin-converting enzyme 2 (ACE2) [38]. Sini-
grin and hesperetin, two active components in
Indigowoad Root (I. indigotica, NE.), had high
binding affinities for 3C-like protease (3CLpro) of
SARS-CoV-2 [42,43]. The mechanism studies on
pharmacological activities of NRICM101 in the
treatment of COVID-19 are limited to confirming
the interaction of the formula with viral proteins
and other structures according to identified patho-
genic pathways of these remedies must be per-
formed before further clinical trials. In our study,
the results of NGS analysis indicated NRICM101
regulated SARS-CoV-2 infected pathways on
COVID-19 (Supplementary Figure S1 (https://www.
biomedicinej.com/cgi/editor.cgi?article¼1378&
window¼additional_files&context¼biomedicine)).
The experimental studies showed that all active
components of NRICM101 may be a potent anti-
SARS-CoV-2 agent for COVID-19.

It has been demonstrated that an association be-
tween poor outcome and cytokine-release syn-
drome (CRS) of COVID-19 [44,45]. In this study, we
first analyze target proteins, biological pathways,
disease, and function of bioactive compounds of
NRICM101 using a high throughput target
screening system. According in silico study results,
we predicted that NRICM101 exerted multiple tar-
gets and signaling pathways (Fig. 3). Further anal-
ysis revealed that the main bioactive compounds
contained within the cytokine-related pathways (IL-
15 production, LPS/IL-1 Mediated Inhibition of RXR
Function) (Fig. 7), oxidative stress response path-
ways (NRF2-mediated Oxidative Stress Response,
HIF1a Signaling), pulmonary related signaling
pathways (Pulmonary Fibrosis Idiopathic Signaling
Pathway, Pulmonary Healing Signaling Pathway)
(Figs. 4e6). NRICM101 potentially affected the in-
flammatory cytokine signaling, including TNFR2,
TNFR1, IL-1, IL-2, IL-4, IL-6, IL-7, IL-12, IL-13, IL-17,
and IL-23 Signaling (Fig. 3), all of which were pre-
viously identified in COVID-19 [46,47]. Through
high throughput target screening and signaling
pathway analysis on the inflammation of the lung,
respiratory systems and SARS-CoV-2, these com-
pounds contained within NRICM101 not only serve
important roles on anti-SARS-CoV-2 agents but can
also provide potential points for developing lung
and respiratory system protection agents. The

Fig. 11. Ingenuity canonical pathways of NRICM101 by NGS analysis. The most significantly enriched pathway was shown and involved in IL-15
production.
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importance of nodes, the results in Fig. 7 found the
MAP3K7, JNK, MKK3/6, p38MAPK, and
MAPKAPK2 target proteins were involved in IL-1/
TNF signaling pathways.
The first purpose of this study was to investigate

the effects of NRICM101 on TNF-a/IL-1b-induced
normal human lung HEL 299 cell injury. Our results
demonstrated the protective effects of NRICM101
against TNF-a/IL-1-induced injury (Fig. 8A), cyto-
toxicity (Fig. 8B), DNA condensation and damage
(Fig. 8C), and JNK (Fig. 9A), p38MAPK kinase ac-
tivities (Fig. 9B). Second, NGS analysis was con-
ducted to investigate the molecular mechanisms
and signaling pathway of NRICM101 on TNF-a/IL-
1b-injured HEL 299 cells. Results for Fig. 10 and
Supplementary Table S1 (https://www.
biomedicinej.com/cgi/editor.cgi?
article¼1378&window¼additional_files&context
¼biomedicine) showed a total of 213 genes were up-
regulated, and 118 genes were down-regulated. A
network of the associations of different genes was
generated following IPA analysis, as shown in
Fig. 11, Which regulation of cytokines and immune

cells (IL-15 production, Th1 and Th2 activation
pathway, role of cytokines in immune cells, Th1
pathway, role of macrophages and fibroblasts,
cytokine production in macrophages and T helper
cells, differential regulation of cytokine production
in IL-17, IL-10 signaling, role of IL-17F in allergic
inflammatory airway diseases, IL-6 signaling; red
lines), pulmonary related disease (airway pathology
in chronic obstructive pulmonary disease, role of
hypercytokinemia in the pathogenesis of influenza,
wound healing signaling pathway; green lines), ki-
nase (STAT3 pathway, p38 MAPK signaling; yellow
lines), receptor (LXR/RXR activation, glucocorticoid
receptor signaling; purple lines) and others (cardiac
hypertrophy signaling, HMGB1 signaling, apelin
cardiac fibroblast signaling pathway, atherosclerosis
signaling, tumor microenvironment pathway, he-
patic fibrosis, 3-phosphoinositide degradation, d-
myo-inositol-5-phosphate metabolism, role of oct4
in mammalian embryonic stem cell pluripotency;
blue lines) played main roles of NRICM101 on TNF-
a/IL-1b-injured HEL 299 cells. These results suggest
the importance of the immune regulation of

Fig. 12. (A) Predictive target genes and associated IL-1B cytokine. (B) IPA core analysis of potential targets of NRICM101 in cell movement and
cellular infiltration by macrophages.
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NRICM101. In Fig. 11, the ingenuity canonical
pathways and major target proteins of NRICM101
were shown, including IL-1-mediated inflammatory
signaling (Fig. 12A), cell movement of macrophages,
cellular infiltration by macrophages (Fig. 12B) and
Th1 and Th2 activation signaling (Fig. 13). Surpris-
ingly, the results of NGS analysis demonstrated that
IL-1A, IL-1B, TNFSF4, TNFSF18, IFI44L, IL32, and
CCL2 genes were down-regulated of NRICM101 on
TNF-a/IL-1b-injured HEL 299 cells (Supplementary
Table S1 (https://www.biomedicinej.com/cgi/editor.
cgi?article¼1378&window¼additional_files&context
¼biomedicine)). In the present study, in vitro study
results are not only support our in silico results
but also suggest a protective role and immune-
regulation function of the NRICM101 against
normal human lung cell injury.
IL-15 is an immune-regulatory cytokine and plays

an important role in anti-viral properties [48]. IL-15
is a T cell response to cytokine and is expressed in
myeloid cells. IL-15 activates natural killer (NK) cells
and then modulates inflammation when virus-infect
host cells [48,49]. It has been reported that IL-15
expression increases innate immune responses
through the induction of NK cells and CD8þ T cells,
and then decreased IL-4, IL-5, and IL-13. IL-15 in-
hibits viral replication, reduces viral loads and

reduces SARS-CoV-2-induced inflammation and
fibrosis [48e50]. Our in silico and in vitro studies
showed that IL-15 production signaling is involved
in TNF-a/IL-1b-induced normal human lung cell
injury after NRICM101 treatment. Our results sug-
gest that NRICM101 may affect T cell proliferation,
activation, and NK cells activation. In future exper-
iments, we will focus on IL-15 production signaling
and design a series in vivo experiments of functional
assays to include T cell proliferation, T cell activa-
tion, and NK cell activation and Th1, Th2 regulation.
Previous studies demonstrated that baicalin and

baicalein in Scutellaria Root (S. baicalensis, HA.) can
attenuate cytokine-induced and chemokine-induced
inflammation [9,19]. Syringic, vanillic, p-hydrox-
ybenzoic and ferulic acids of Heartleaf Houttuynia
(H. cordata, HC.) and Liquorice (G. glabra, NG.)
extract, glycyrrhizin suppressed lipopolysaccharide
(LPS)-stimulated expression of PGE2, iNOS, IL-1b,
TNF-a and IL-6 levels in LPS-induced RAW264.7
inflammatory models and LPS-induced inflamma-
tory in endometrial epithelial cells [51e53]. In vitro
study showed that IL-1b-induced activation of in-
flammatory factors (TNF-a, IL-6, INOS, and COX2)
was suppressed by Mulberry Leaf (M. alba, NB.) [54].
18b-Glycyrrhetinic acid of Liquorice (G. glabra, NG.)
inhibits IL-1b-induced inflammatory response in

Fig. 13. Predictive target genes and associated Th1/Th2 immuno-regulation pathways in the pulmonary system.

68 Y.-D. CHENG ET AL
STUDIES OF NRICM101 ON TNF-a/IL-1b-INJURED LUNG CELLS

BioMedicine
2022;12(3):56e71

O
R
IG

IN
A
L
A
R
T
IC

L
E

https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine
https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine
https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine
https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine
https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine
https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine
https://www.biomedicinej.com/cgi/editor.cgi?article=1378&window=additional_files&context=biomedicine


mouse chondrocytes [55]. In addition, Licochalcone A
of Liquorice (G. glabra, NG.) attenuates LPS-induced
acute kidney injury [56]. Our findings of the present
study were consistent with previous study results on
the protective effect of NRICM101 in TNF-a/IL-1b-
injured HEL 299 cells.

5. Conclusion

Although most of the bioactive components of
NRICM101 were selected for this study, the list of
compounds in Table 1 was investigated to be not
representative of all the chemical components in
NRICM101. Finally, our study had several limitations
in this study. All in silico and in vitro approaches
require further in vivo and clinical experimental
verification. Collectively, our results revealed the
potential of NRICM101 as a therapeutic agent based
on TCM thatmay confer beneficial effects onCOVID-
19 patients through multiple targeting and multiple
mechanisms. Furthermore, the major bioactive com-
pounds of NRICM101 are worthy of attention as
striking candidates for anti-viral agent and protective
agent discovery studies on COVID-19. It may be
useful for further studies on the therapeutic proper-
ties of NRICM101 and its constituents on a molecular
level, with the aim of findings thatmight contribute to
improving care for COVID-19 patients.
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Table 1. The components of NRICM101.

Scientific Name Compound Name

Scutellaria Root
(Scutellaria baicalensis)

Baicalein
Baicalin
Wogonin
Wogonoside

Heartleaf Houttuynia
(Houttuynia cordata)

Decanoyl acetaldehyde
Lauric aldehyde
Quercetin
Linalool
Luteolin
Kaempferol

Mulberry Leaf (Morus alba) N-Methyl-1-deoxynojirimycin
-O-a-D-galactopyranosyl
-deoxynojirimycin
Fagomine
Rutin
Quercetin
Isoquercitrin
Quercetin 3-O-glucuronide
b-sitosterol
Stigmasterol
Camposterol

Saposhnikovia Root
(Saposhnikovia divaricata)

5-O-methylvisammioside
prim-O-glucosylcimifugin
Cimifugin
sec-O-glucosylhamaudol
Hamaudol
Lignoceric acid
Dacursin

Mongolian Snakegourd Fruit
(Trichosanthes kirilowii)

Bryonolic acid
Cucurbitacin B
Cucurbitacin D
23，24-Dihydrocucurbitacin B

Indigowoad Root
(Isatis indigotica)

Epigoitrin
Indigotin
Indirubin
b-sitosterol
Clionasterol
Sinigrin
Indoxyl b-d-glucoside
Epigoitrin
Palmitic acid
Adenosine

Baked Liquorice Root
(Glycyrrhiza glabra)

Glycyrrhetic acid
Glycyrrhizic acid
Glabrolide
Liquiritin
Liquiritingenin
Isoliquiritin
Isoliquiritingenin

Magnolia Bark (Magnolia
officinalis)

Magnolol
Honokiol
a-Eudesmol
b-Eudesmol

Peppermint Herb
(Mentha haplocalyx)

Menthol
Menthone
Glucoside

(continued on next page)

Table 1. (continued)

Scientific Name Compound Name

Fineleaf Nepeta
(Nepeta tenuifolia)

Apigenin
Rutin
Kaempferol
Chlorogenic acid
b-Sitosterol
Caryophyllene
Pulegone
Menthone
a-Phytosterol
a-Tocopherolquinone
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